
NML

Language Description (draft)

v0.5
-

-

12 Nov 2017

http://www.generaldevelopment.com.au

This work is licensed under a Creative Commons Attribution-NoDerivatives
4.0 International License. http://creativecommons.org/licenses/by-nd/4.0/

Prepared by Daniel Kos, General Development Systems, November 2017.

Typeset using LATEX.

Contents

1 Introduction 5
1.1 Version History . 5
1.2 About NML . 5
1.3 NML vs XML . 5

1.3.1 What's wrong with XML? 6
1.3.2 What about JSON? . 6

1.4 Example syntax . 6
1.4.1 Example 0: Hello world 6
1.4.2 Example 1: encoding web-like page markup 6
1.4.3 Example 3: procedural programming 7
1.4.4 Example 4: Structured data representation 8

2 Data storage and oragnisation 9
2.1 Data types . 9

2.1.1 String . 9
2.1.2 Integer . 9
2.1.3 Floating point number . 9
2.1.4 Identi�er . 10

2.1.4.1 Reserved identi�ers corresponding to literal values 10
2.1.5 Tag . 10

2.1.5.1 Fields . 10
2.1.5.2 Tags . 11
2.1.5.3 Identi�ers . 11

3 Syntax 13
3.1 Text entry . 13

3.1.1 Whitespace handling . 13
3.2 Tags . 13
3.3 Tag type �eld . 14
3.4 Default �eld . 14
3.5 Fixed-length data . 14

3.5.1 Syntax . 15
3.5.2 Example . 15
3.5.3 Syntax error conditions 15
3.5.4 Rationale for length-speci�er requirement 15

3.6 Comments . 16
3.6.1 Purpose . 16
3.6.2 Syntax . 16

3

4

3.6.2.1 Example . 16
3.7 Escape sequences . 16

3.7.1 Syntax . 16
3.7.1.1 Rationale for the use of a forward slash 17
3.7.1.2 Escaping common symbols 17
3.7.1.3 Entering a character by unicode 17
3.7.1.4 Other escape sequences 17

3.7.2 Why are escape sequences required? 18
3.8 Numerical input syntax . 18

3.8.1 Parts of input . 18
3.8.1.1 Negative sign . 18
3.8.1.2 Base pre�x . 19
3.8.1.3 Mantissa . 19
3.8.1.4 Place shift (scienti�c exponent) 19

3.8.2 Examples . 20
3.8.3 Notes . 20

3.9 Literal identi�ers . 21

4 Additional requirements 23
4.1 Character encoding . 23

4.1.1 Requirement A . 23
4.1.1.1 Rationale . 23
4.1.1.2 Exception . 23

4.1.2 Requirement B . 23
4.1.2.1 Rationale . 24

A Converting XML data to NML 25

Chapter 1

Introduction

1.1 Version History

• In v0.5 of this document, the following changes have been introduced.
These changes have been made in response to practical experiences to
correct parts of NML syntax which proved arduous or unweildly.

� Former backslash in escape sequence syntax replaced with forward
slash.

� XML-style CDATA syntax replaced with a syntax for �xed-length
data literals.

• In v0.4 of this document, we have removed support for mixed-case hex-
adecimal literals. The previous arrangement allowed for hexadecimal dig-
its >9 to be entered in lowercase, which allowed for hex literals that looked
like identi�ers, a�ecting code readability.

• In v0.3 of this document, we have changed CData syntax from being
encapsulated by a single brackets [] to brackets and braces [{ and }]. The
previous arrangement meant that a string of CData could never end with
a backslash.

1.2 About NML

NML stands for New Multipurpose Language. The initials are also something
of a loose pun on XML � the language from which NML draws its inspiration.

Like XML, NML is not a complete language in itself but rather a gereralised
`base' language, de�ning a core syntax on which to build complete languages
(in the same way as HTML is built on XML syntax). NML does not de�ne any
speci�c language behaviour or implementation.

1.3 NML vs XML

NML is based loosely on XML (XML code can be converted to NML very
easily, see appendix A), but adds an extra dimension of data nesting, as well

5

6 CHAPTER 1. INTRODUCTION

as non-string data types and value lists. While XML's applications are limited
to document markup and hierarchical data organisation, NML is intended to
be suitable for a broader set of applications (as we aim to demonstrate with
examples in this document), including functional programming.

1.3.1 What's wrong with XML?

XML is excellent for what it was designed for: pure markup applications, with
HTML being the most ubiquitous, but it can't really be extended to other pro-
gramming paradigms. (As an example, consider web development. A modern
web developer has to learn not one but three languages: HTML, CSS, and
JavaScript. No one set of syntax rules ful�lls all three roles on its own.)

In our case, we wanted to develop a functional programming language with
XML syntax. After trying in vain to devise a workable syntax for what we
wanted to achieve, that would also meet W3C's XML speci�cation, we eventu-
ally gave up on the idea and developed NML instead.

1.3.2 What about JSON?

JSON (JavaScript Object Notation) already provides much the same data-
organisation �exibility as NML, but unfortunately is rather unwieldly when
it comes to applications outside data organisation. It wouldn't be particularly
user-friendly as a document markup language, for instance.

NML falls somewhere between XML and JSON. You can think of NML as
a sort of compromise between the expressive abilities of the two languages.

1.4 Example syntax

These examples introduce the reader to various language elements, while at the
same time demonstrating the expressiveness of NML. All examples are valid
NML code. However, the tag and �eld names, as well as implied behaviours
of the following examples, are hypothetical only. NML provides the syntax
framework only. It does not specify tag and �eld names, nor runtime behaviour.

1.4.1 Example 0: Hello world

Hello , world!

Text entry is the `root' entry mode of NML. Unlike XML, there is no need
for a root tag.

(There is however a `root �eld'. Fields will be introduced in the next exam-
ple.)

1.4.2 Example 1: encoding web-like page markup

<web title={ Welcome} description ={A sample page} body={

<heading level=1 {Sample page}>

This is a sample of what an NML -based alternative

to HTML might look like.

</p><hyper url={http ://www.example.com/} {Click here!}>

}>

1.4. EXAMPLE SYNTAX 7

This purely hypothetical example demonstrates how web pages might be
encoded if they were based on NML rather than XML syntax.

Lets identify the various language elements in this example:
• web, heading, and hyper are identi�ers, or names, for di�erent kinds of

tags. Tags mark-up and give structure to data.

� Tags are encapsulated by angle brackets < >.

• title, description, body, level, and url are identi�ers for di�erent
�elds within tags. Fields store data.

• Items that follow an = sign are �eld elements. Field elements are elements
of data within �elds.

• {Sample page} and {Click here!} are also �eld elements, even though
they do not have an associated �eld identi�er or = sign. Each tag is
allowed to have a single default �eld, which is unnamed. Field elements
are automatically assigned to the default �eld if no �eld identi�er is used.

• Braces { } encapsulate text data, which can contain embedded tags,
among other things.

• </p> is not a tag but an escape sequence. Escape sequences allow entry
of special characters. This particular escape sequence inserts a character
that begins a new paragraph.

1.4.3 Example 3: procedural programming

<function main {

<set name , <input {Enter your name...}>>

<print {Hello , }, name , {!}> <!e.g. `Hello , Jim!' !>

<print {Let 's count to 10!}>

<for i,1,10 do={ <!loop over values 1 to 10!>

<print i>

}>

<return 0>

}>

This example demonstrates how a procedural language might look if ex-
pressed in terms of NML syntax. The syntax is rather more compact and
workable than it might be had we attempted to express it in XML or JSON
syntax.

This example makes heavy use of default �elds, and we also introduce the
reader to NML's ability for a �eld to store multiple �eld elements, represented
by a comma separated list.

• main, name, and i are examples of identi�ers that are neither tag names
nor �eld names. Rather, they are used here as �eld element values within
the default �elds of various tags.

• Pieces of text enclosed between <! and !> are comments. They explain
the code to the reader without a�ecting functionality.

8 CHAPTER 1. INTRODUCTION

1.4.4 Example 4: Structured data representation

<customer

name={ Smith},{John}

address =123 ,{ Sample St},null ,{ Townsville },{QLD}

dob=<date y=1942 m=6 d=24>

>

Although XML is a popular choice for structured data representation, NML
provides a bit of additional �exibility. In XML, each attribute is limited to
storing a single string. NML allows for each �eld to store any number of ordered
data elements, as well as nested tags.

Chapter 2

Data storage and oragnisation

This chapter covers how data are sored and organised internally.

2.1 Data types

Any �eld element may store one of the following data types.

2.1.1 String

A string is a sequence of characters, used to store such things as text, phone
numbers, and occasionally non-readable data.

2.1.2 Integer

An integer is a whole number, which does not have a fractional part. How in-
tegers are stored, and the range of valid integers, is machine and/or implemen-
tation dependent. Integers may be positive or negative (there are no `unsigned'
integers).

2.1.3 Floating point number

A �oating point number is a number with a fractional part (for example 3.14159).
Although most system architectures support two di�erent �oating point preci-
sions, NML syntax doesn't allow any distinction. Implementors should use
double precision where practical. (Nominally, the minimal byte-size of a tagged
union implementation of �eld elements will negate any space saving from using
single precision �oats anyway.)

It is worth noting that �oating point storage provided by most system archi-
tectures is based on binary representation. Many decimal fractions do not have
a rational binary representation, and are subject to rounding error when stored
in this format. In particular, binary �oating point representation is inadequate
for storing currency values. Implementors may opt to implement �oating point
numbers with an internal decimal representation to mitigate this issue, although
this incurs a performance overhead.

9

10 CHAPTER 2. DATA STORAGE AND ORAGNISATION

2.1.4 Identi�er

An identi�er is a character sequence, such as a keyword, that is used to identify
something within the language, such as the name of a tag, �eld, or something
else.

Identi�ers are not strings: although externally they are entered as a sequence
of characters, a real-world implementation is allowed to convert them internally
to a more e�cient internal representation from which the original character
sequence cannot be recovered.

2.1.4.1 Reserved identi�ers corresponding to literal values

The following identi�ers are reserved within NML, and correspond to non-
numeric, non-string, literal values. This is a minimal set. Implementors are free
to expand this list to allow for additional literal values, such as `not_applicable'
for survey data, for instance.

Identi�er De�nition

null Empty �eld element. Default for unde�ned �elds.
inf Result of division by zero. (Conceptually in�nite.)
invalid The result of an invalid operation (e.g. multiplication by a string).
true

States of Boolean truth and falsehood.
false

2.1.5 Tag

Tags are data structures containing one or more �elds.

2.1.5.1 Fields

A �eld stores a list of one or more values, each of which is known as a `�eld
element.'

Di�erent �eld elements within a �eld can store di�erent data types.
All �elds are capable of storing multiple elements even though many �elds

will only require a single value.
Each �eld element can contain a tag, an identi�er, or literal data (including

states like null and invalid).

Analogous to...

• A single variable, or an array of variables, in a procedural language.

• A table column in a relational DBMS.

• Attributes in XML.

• Tag content in XML.

Special �elds

• Tag type �eld: one or more �eld elements that de�ne the tag type.

• Default �eld: optional �eld with null identi�er (unnamed).

2.1. DATA TYPES 11

2.1.5.2 Tags

A tag is a collection of named �elds, as well as an optional unnamed default
�eld, and a tag type (which is also a �eld).

Analogous to...

• a struct in C language.

• A record in BASIC.

• a table row in a relational DBMS.

2.1.5.3 Identi�ers

Identi�ers are used to specify �eld names and tag types. An identi�er is com-
posed of any sequence of characters (excepting the null character). Identi�ers
are independent of NML syntax rules.

Even though identi�ers are made of characters, they are not strings and
cannot be evaluated as strings. They are merely mnemonic tokens for the parser
to recognise and convert into some internal representation.

Identi�ers represent tag types and �eld names. They can also be assigned
as values to �eld elements (however, this speci�cation does not dictate how an
identi�er used as a value should be interpreted).

Validity of identi�ers:
Any sequence of characters (excepting the null character) is a valid identi-

�er. Escape sequences may be used to input characters that would otherwise
con�ict with language syntax (such as spaces, or the tag opening bracket `<',
or identi�ers that resemble literal data), or to allow people in English-speaking
countries to enter identi�ers that contain non-western symbols, for example.

Rationale:
it is our view that particular identi�ers should not be forbidden by or depen-

dent on any particular language syntax (especially as real-world NML imple-
mentations may impose their own additional syntax rules). Even if an identi�er
may be inconvenient to type with escape sequences, it should still be possible
to enter it into the system if needed. (In the same way, UNIX �lenames aren't
restricted by syntax rules of the various command line shells available.) Nor
should identi�er naming rules discriminate against users of non-english alpha-
bets.

12 CHAPTER 2. DATA STORAGE AND ORAGNISATION

Chapter 3

Syntax

3.1 Text entry

Text entry is the default entry mode in NML. This means that if your code con-
sists of pure text at the top level, such as Hello, world!, without an unescaped
< character, then this text will be assigned to the �rst �eld element of the root
�eld of the NML input. Below the top level, you can enter text anywhere a �eld
element can be speci�ed, by enclosing it in braces { }.

You can embed tags, escape sequences, and comments inside text. Because a
single �eld element cannot store both a text string and a tag, text with embedded
tags is stored in multiple �eld elements. This means that:

<tag f i e l d={Hel lo , <getname>!}>

is equivalent to:

<tag f i e l d={Hel lo , } , <getname>, {!}>

You can separate a string into two separate elements without a closing brace
using the string element separator <>.

3.1.1 Whitespace handling

Whitespace consists of spaces, tabs, and newlines. Whitespace is useful for
organising and indenting code for clarity, although one doesn't want these extra
spaces, newlines, and tabs to form part of the data parsed into the system.

We therefore specify that NML collapses whitespace (the exception being
inside �xed-length data). Any amount of contiguous whitespace is reduced to
a single space character. This behaviour is similar to that adopted by HTML.
Escape sequences are available for making newlines, tabs, and spaces explicit.

3.2 Tags

These are loosely based on XML tags. You open a tag with a < and close it
with a > . Unlike XML, tags are self-contained. There is no such thing as an
end-tag in NML.

Tags contain a type �eld, and zero or more additional �elds, including an
optional default �eld, which has no �eld identi�er.

13

14 CHAPTER 3. SYNTAX

<type field1=value field2=value1 , value2 value>

The last value above is attached to the default (unnamed) �eld. Any �eld can
have multiple �eld elements, separated by commas , . Default �eld values do not
need to be separated by commas (although it certainly doesn't hurt to do so),
since the lack of a comma after any value means we revert to the default �eld,
until we read another �eld name (which we recognise as an identi�er followed
by an = sign).

Optional whitespace may be used to pad out commas, equals signs, and
angle brackets.

3.3 Tag type �eld

The type �eld is the �rst thing speci�ed after opening a tag. There is no �eld
identi�er or = sign; type �eld elements always follow a tag opening.

As with other �elds, multiple elements can be speci�ed, separated by com-
mas. This allows namespace hierarchies, special modi�er symbols (speci�ed as
identi�ers), among other things. The type �eld behaves just like any other �eld.

The �rst example tag has two elements in its type �eld (an example of a
namespace hierarchy). The second and third examples have their type �elds
de�ned by a single element.

<gui ,button {Hello world!} name={blah}>

<set customers ,7254 , address val ={221B Baker St}>

<action on=blah ,click <quit >>

3.4 Default �eld

Input reverts to the default �eld if a data element is speci�ed that is not preceded
by the beginning of a tag < , a comma , or an equals sign = . Any data types can
be used, including identi�ers. An identi�er that is not followed by an equals sign
is treated as a value of a �eld element rather than a �eld identi�er. Multiple
default �eld elements may be separated by commas, but they don't have to
be, since the lack of a comma causes the parser to revert to appending value
elements to the default �eld anyway.

3.5 Fixed-length data

A �xed-length literal is like an escape sequence for an entire string of arbitrary
characters. It can consist entirely of non-printable characters (such as a packet
of binary data), and can be used for representing (for example) the entire con-
tents of an image �le within the NML tree. Since the literal data may contain
any characters at all (including characters that might interfere with valid NML
syntax), the length of the string must be speci�ed in advance as the number
of bytes to follow. (The characters are not decoded or interpreted; the NML
implementation will not know or care each byte corresponds to a valid character
or not.)

3.5. FIXED-LENGTH DATA 15

3.5.1 Syntax

A �xed length literal begins with [n { (where n is the number of bytes in the
packet to be enclosed by the following braces, expressed as a numerical literal)
and is terminated with }] . This construct is valid outside text-entry mode,
and may be used in place of the braces { } used for normal text entry.

• [n{arbitrary data}]

Token De�nition

[Denotes start of data construct
n A numerical literal representing the number of bytes in the data
{ Denotes start of data
}] Terminates construct

data Arbitrary string of characters exactly n bytes long

3.5.2 Example

The following is a �xed-length string of 33 bytes of data (here corresponding
to the set of English-language lowercase characters and some punctuation, al-
though in practice the data needn't contain printable characters)...

[33{ abcdefghijklmnopqrstuvwxyz , . < >{}!}]

3.5.3 Syntax error conditions

If after the speci�ed number of byte characters have been retrieved, a }] is not
encountered, the syntax is invalid.

If (outside text mode) a value is expected and a [is encountered but it is not
followed by a numerical literal and a {, the syntax is also invalid. Whitespace
around the numerical literal (between the opening [and { characters) are valid.
Whitespace is not valid between the two characters in the closing }] however.

If the �le ends before the speci�ed number of characters have been read, the
NML syntax is not well-formed, but this is regarded as a premature end of �le
rather than a syntax error speci�c to �xed-length data.

3.5.4 Rationale for length-speci�er requirement

Previous versions of the NML spec speci�ed a system where literal byte data
would be terminated with }] without needing a length speci�er. That is a
similar approach to CDATA in XML. This was problematic as the data itself
may contain }] as part of the intended data, and this then required a potentially
confusing system of escape sequences for entering]} literally. The need to �lter
byte data character-by-character to check for a] and re-express it using a special-
case escape sequence, can be nontrivial to implement and sacri�ces e�ciency
(defeating much of the purpose of providing such a construct). By contrast, it
is almost always trivial to determine the length of a string in advance.

16 CHAPTER 3. SYNTAX

3.6 Comments

Comments allow the insertion of arbitrary text into NML code without it having
any e�ect on code or data. They otherwise perform no function; the parser
simply skips over them as though they weren't there.

3.6.1 Purpose

Comments are typically short explanatory notes left for the bene�t of code
maintainers. They also provide a way of disabling code without removing it
entirely.

3.6.2 Syntax

• <!comment text!>

Token De�nition

<! Denotes start of comment
!> Terminates comment

comment text Any character sequence that doesn't contain !>

When the parser encounters a <! sequence it will ignore that sequence and
everything that follows until it reads a !> sequence.

Comments are valid everywhere except in �xed-length data (where they are
treated as literal data) and inside other comments (comments do not nest). They
are valid within strings. They are even valid in the middle of identi�ers (mainly
for reasons relating to consistency with escape sequences, although placing a
comment in the middle of an identi�er is always an unusual thing to do).

3.6.2.1 Example

<!this is a comment that will be <completely > {ignored}

by the parser!>

3.7 Escape sequences

An escape sequence is a means of entering a particular character while overriding
its syntactical meaning within the language (for example, we might wish to use
a right brace } in the middle of a text element, without the parser interpreting
it as the end of the text). Another use for escape sequences is for entering
characters that aren't present on the user's keyboard.

3.7.1 Syntax

On the surface, escape sequences resemble tags, but with a terser form. (Unlike
tags, escape sequences represent a single character rather than a �eld element.

You can use an escape sequence just about anywhere, including in an iden-
ti�er.

Token Meaning

</ begin escape sequence
> terminate escape sequence

3.7. ESCAPE SEQUENCES 17

Escape sequences cannot contain spaces. The sole exception is the </ >

sequence, which escapes a space character.

3.7.1.1 Rationale for the use of a forward slash

NML now speci�es a forward slash instead of a backslash for escape sequences.
Since escape sequences must be enclosed in angle brackets, there is no risk of
ambiguity with a literal forward slash, which can be entered normally elsewhere.

It is conventional, in many programming languages, to use a backslash (not
a forward slash) to denote an escape sequence. A side-e�ect of this is that many
traditional languages will require a literal backslash to be entered as a double-
backslash escape sequence. Since NML code may be dynamically generated
using code written in a di�erent programming language, using a backslash for
NML escape sequences would mean that in order to specify an NML escape
sequence, the backslash in the NML escape sequence would �rst need to be
escaped in the host language. This proved very confusing in practice, not to
mention accident-prone.

3.7.1.2 Escaping common symbols

Any character may be escaped simply by placing it between </ and > without
spaces, with the exception of characters a�z and # , which are reserved for
special escape sequences and cannot be escaped themselves.

Thus </<> produces the escaped form of < , which will be treated like a
normal character, rather than having a special meaning within NML. Similarly,
</ > escapes a space, allowing the use of spaces within identi�ers.

3.7.1.3 Entering a character by unicode

• </#charcode>

charcode can be any unicode character code. It is expressed using NML's nu-
merical literal syntax (described later), which means it can be expressed in
whichever number system you prefer (e.g. octal or hexadecimal, with decimal
being the default).

3.7.1.4 Other escape sequences

Characters a-z and A-Z are reserved for special escape sequences, most of which
have not been de�ned yet.

Escape sequence De�nition

</n> newline (line break)
</p> new paragraph (paragraph break)
</t> tab character
</s> zero-width space
</S> non-breaking space
</h> Soft hyphen
</H> non-breaking hyphen
</d> en dash
</D> em dash

18 CHAPTER 3. SYNTAX

Figure 3.1: Syntax diagram for numerical input. If a token breaks the numerical
input syntax pattern, it is thus determined to be an identi�er rather than a
number literal.

3.7.2 Why are escape sequences required?

• To make the parser overlook characters that would otherwise have a special
meaning in NML, and treat them just like any other characters. You might
want to have a space in the middle of an identi�er (this kind of naming
is not recommended) or you might want to insert a less-than symbol, < ,
into a string, without NML thinking you mean to begin a tag.

� to make special characters like `<' lose their power, so you can use
them in identi�ers and strings just like any other character.

� To make NML treat numbers like characters, rather than digits.

• To make things explicit, like spaces and newlines, which NML might oth-
erwise treat as spurious whitespace in code layout rather than intentional
formatting

• To occasionally enter characters you don't have on your keyboard, and
invoke identi�ers that contain such symbols

3.8 Numerical input syntax

NML accepts numerical literals entered in binary, octal, decimal (default), and
hexadecimal, with optional scienti�c notation.

3.8.1 Parts of input

A numerical literal consists of the following components, in order, without
spaces.

Part Example

1 Negative sign (optional) -

2 Base pre�x (optional) x

3 Mantissa (mandatory) 27.2421

4 Exponent (optional) s-3

3.8.1.1 Negative sign

If the number is negative, the �rst character must be a negative `-' sign.

3.8. NUMERICAL INPUT SYNTAX 19

If there is more than one negative sign, an even number denotes a positive
number and an odd number denotes negative.

Negative signs must precede any base pre�x.

3.8.1.2 Base pre�x

If a number is not in decimal form then a base pre�x should be speci�ed after
any negative sign and before the mantissa. The pre�x must be lowercase.

Pre�x Base Number system

b 2 Binary
o 8 Octal

10 Decimal (default)
x 16 Hexadecimal

3.8.1.3 Mantissa

The main part of the number, which may contain a `.' point character to
separate the integer part from the fractional part of the number. If a point is
present then the number is represented internally as a �oating point number
even if there is no fractional part after the point. If the integer part is zero then
a `0' must be placed before the point. The mantissa cannot begin with a point
character.

Number system Valid numerals

binary 0, 1

octal 0�7
decimal 0�9

hexadecimal 0�9, A�F

Examples:

• 3

� This is an integer

• 3.14

� This is a �oating point number

• 3.

� This is a �oating point number

3.8.1.4 Place shift (scienti�c exponent)

A lowercase s after the mantissa indicates that an exponent follows.
The exponent is a decimal integer (regardless of mantissa base), which indi-

cates how many places the point should be shifted. An exponent can be pre�xed
by a negative sign, which indicates a left shift of the point. A positive exponent
has no sign, and indicates a right shift.

For binary numbers this is equivalent to a bit-shift operation.
The resulting number, n, is given by

20 CHAPTER 3. SYNTAX

n = m× be

where m is the mantissa (with any negative sign applied to it), b is the base,
and e is the exponent.

3.8.2 Examples

• -b101s-5 � this is binary −101b × 2−5 = −0.00101.

� The s-5 represents a scienti�c exponent which shifts the point 5
binary places to the left.

• xFF � hexadecimal representation of 255.

• o1224 � octal integer.

• 42 � a humble decimal number can be represented just like you've always
done

• 6.02s23 � this means 6.02× 1023

3.8.3 Notes

• Programming languages and spreadsheets traditionally use the letter e to
denote scienti�c exponent. NML uses the letter s, which stands for `shift.'

� NML treats di�erent number systems on an equal footing with deci-
mal, meaning that scienti�c notation can be applied to hexadecimal
numbers. In this context, the letter e representing exponent would
be ambiguous, as e is a hexadecimal numeral.

� The exponent is speci�ed in decimal, regardless of the base used. The
exponent represents a power of the base of the number system used
(for example, a power of 10 for decimal, or a power of 8 for octal).

• If you use scienti�c notation, or supply a point (.), or specify a number
with too many digits to �t in your computer's integer representation, NML
will store it as a �oating point number. Otherwise, it will be stored as an
integer.

� The base in which numbers are entered has no e�ect on how they are
stored internally.

� Numerical values are stored as either binary integer or binary double-
precision �oating point. The number of bits used depends on the
system architecture of the user's machine.

• Hexadecimal digits A-F must be entered in uppercase. This requirement
was added to address a code readability issue. For example, the hexadec-
imal numeral xACED would look more confusingly like an identi�er name
if it were allowed to be written as xaced.

3.9. LITERAL IDENTIFIERS 21

3.9 Literal identi�ers

The following reserved identi�ers have a literal meaning. They cannot be used
as tag or �eld identi�ers as they always evaluate to literal values.

true false null inf invalid

22 CHAPTER 3. SYNTAX

Chapter 4

Additional requirements

4.1 Character encoding

4.1.1 Requirement A

NML code shall be encoded in UTF8.

4.1.1.1 Rationale

• UTF8 is a sensible and space-e�cient encoding scheme that is widely used
in internet applications.

� UTF8 uses one byte per character for Unicode character codes 0-127,
and two or more bytes per character to encode Unicode characters
above 127.

• Plain old standard ASCII (not extended ASCII) is a subset of UTF8,
meaning that (in English-speaking countries, at least) most plain text
�les in existence are already UTF8.

• Code streams dynamically generated by other applications are typically
UTF8 already without the programmer having to do any extra work.

4.1.1.2 Exception

If use of UTF8 encoding creates an incompatibility with an established system,
another character encoding scheme may be substituted instead. This deviation
from the speci�cation shall be well documented. The implementation shall not
require, nor accept, any character encoding information in the �le header, unless
such information is mandated by the character encoding standard used.

4.1.2 Requirement B

No byte-order-mark for UTF8 shall be required (or generated) in a UTF8 en-
coded NML code �le.

23

24 CHAPTER 4. ADDITIONAL REQUIREMENTS

4.1.2.1 Rationale

Byte order marks are not recommended by the UTF8 standard as they break
backward compatibility, they are not universally recognised or implemented,
and are not even particularly useful.

Appendix A

Converting XML data to

NML

1. Replace trailing > in start tags with {

2. Replace end tags with }>

3. In self-closing tags, replace /> with >

4. Replace quotation marks with braces { }

5. Convert special character entities to equivalent NML escape sequences

6. For comments...

(a) replace <!-- with <!

(b) replace --> with !>

25

